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at Large Concentrations: Length of Space Increment 
and Height Equivalent to a Theoretical Plate 
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UNIVERSITY OF TENNESSEE 
KNOXVILLE, TENNESSEE 37996-1600; 

DIVISION OF ANALYTICAL CHEMISTRY 
OAK RIDGE NATIONAL LABORATORY 
OAK RIDGE, TENNESSEE 378316182 

Abstract 

It is shown that the numerical integration of the system of partial differential 
equations accounting for the idea model of chromatography provides the band 
profiles observed with a column of finite eficiency if the space length increment 
of the integration is chosen equal to the column HETP for a zero sample size and 
the time increment is then chosen so that the Courant number is 2. 

INTRODUCTION 

In a recent paper, Rouchon et al. (2) discussed the numerical 
integration of the system of mass balance equations which accounts for 
the behavior of a large concentration band in a chromatographic 
column. The comparison between the profiles predicted by their 
calculations and the profiles recorded experimentally showed good 
overall agreement, especially for the largest samples used, but poor 
rendition of the small or very small samples, the band width of the 
theoretical profiles being about 40% larger than the width of the 
experimental ones. Furthermore, their program had no feature permit- 
ting an easy adjustment of the efficiency of the simulated column. 
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32 LIN AND GUIOCHON 

It was suggested, however, that cairrying out the numerical integration 
with a space increment equal to the height equivalent to a theoretical 
plate (HETP) of the column for an extremely small concentration (linear 
chromatography) should give correct results (1).  

In a more recent paper, Golshan-Shirazi et al. (2) reported the 
simulation of single solute bands on a chromatographic column and 
obtained profiles which are Gaussi(an for very small sample sizes and 
have a standard deviation corresponding to the HETP of the simulated 
column, provided the length of the space increment is taken equal to the 
column HETP. Simulated elution profiles using this program are in 
excellent agreement with those observed experimentally (3). Unfortun- 
ately, there is no justification for this choice, which appears so far to be 
empirical. This could be a serious problem, because the lack of an 
understanding of the relationship between the space length of the 
integration increment and the band smoothness casts some legitimate 
doubt on the validity of the profiles generated by calculating numerical 
solutions of the system of partial differential equations of chromatogra- 
phy, especially at large concentration loadings where the profiles become 
extremely steep. 

We present here a demonstration of the validity of the choice made in 
the work by Golshan-Shirazi et al. (.2,3) and in other work dealing with 
the simulation of the separation of binary mixtures (4-7). 

1. THE SYSTEM OF EQUATIONS OF CHROMATOGRAPHY 

The solution of the chromatographic problem, i.e., the prediction of the 
band profiles in the most general 'case, can be obtained by writing a 
system of equations accounting for tlhe mass balances of all the chemical 
species involved and the kinetics of their mass transfer betwen phase 
boundaries. 

1. Mass Balance Equations 

The mass balance equation of Compound i in a slice of column is 
written (1)  
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CHROMATOGRAPHIC BAND PROFILES 33 

where F = the phase ratio ((1 - E ) / E )  

C,, C, = the concentration cf the solute in the mobile and the 

u = the linear velocity of the mobile phase, assumed to be 

D = the coefficient of molecular (axial) diffusion 

stationary phase, respectively 

constant 

There is one equation like Eq. (1) fcr each compound involved in the 
experiment, whether a component of the sample studied or of the mobile 
phase. In order to simplify the system, we may take the convention that 
the solvent, or the weak solvent in the case of a mixed mobile phase, is 
not adsorbed (8). Since liquids are not compressible and the difference 
between the partial molar volumes in the mobile and the stationary 
phases is very small, there is no need for a mass balance equation of the 
weak solvent. But a mass balance equation is certainly needed for each 
other component of the mobile phase. 

The system of mass balances (Eq. 1 for each compound) is the 
fundamental part of the chromatographic model. It needs to be com- 
pleted by a relationship between the concentrations in the mobile and 
stationary phases or their differentials by respect to time to permit the 
derivation of a solution of the system. 

2. Mass Transfer Kinetics 

It is difficult to write a proper relationship between the time differential 
of the concentration of the Compound i in the stationary phase, the 
experimental parameters, and the local values of its concentrations in 
both phases. Different models may be assumed to account for the mass 
transfer, depending on the nature of the problem (9). The most simple 
such equation is 

-- dcs - - K ( C ,  -J(C,)) 
d t  

where K = a kinetic constant 
f (C,)  = the isotherm equation, i.e., it gives the concentration of the 

corresponding compound in the stationary phase in 
equilibrium with a concentration C, in the mobile phase 

In the case of a multicomponent problem, the isotherm for each 
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34 LIN AND GUIOCHON 

compound is a function of the concentration of all of them in the mobile 
phase. 

The system of partial differential equations obtained by combining 
Eqs. (1) and (2) written for each compound involved is complex and has 
not yet received any solution. Preliminary results indicate that a 
numerical solution may be possible: (9).  

3. The Ideal Model 

In most applications of chromatography, however, the mass transfer 
between phases is extremely fast and these phases are never far from 
being at equilibrium. We may assume, as  a first approximation, that there 
is constantly equilibrium between the mobile and the stationary phases. 
This means that the column has a n  infinite efficiency. Radial mass 
transfer proceeds at a n  infinite rate, while axial diffusion proceeds at a 
zero rate, even when the concentration gradient is infinite. This is the 
“ideal” model of chromatography (10-12). In this case the mass balance 
equation becomes 

wherefis the isotherm equation and C is the concentration in the mobile 
phase. 

It is interesting to observe that a true solution of the system made of Eq. 
( 3 )  (one for each compound involved, plus a competitive isotherm, 
C, = f(C,,,, i)) should exhibit concentration discontinuities or shocks (22)  
because Eq. ( 3 )  can propagate these shocks. Nevertheless, a numerical 
solution of this system does not exhibit true ideal shocks, but very steep 
segments of the profiles instead (2-7). This is due to the smoothing effect 
of numerical integration and had already been observed by Rouchon et 
al. (1 )  and by others (2-7). A shock: could be obtained only if infinitely 
small values of the space and time integration increments could be used. 
This in turn would require an  infinite computer time, clearly an  
unacceptable proposition. 

We want to emphasize at this stage, however, that we do not need a 
solution of the system of equations of the ideal model, since it is an  
approximation. On the contrary, if we could relate the smoothing effect of 
the finite character of the integration elements to the effects of a finite rate 
of mass transfer and of molecular diffusion on strong concentration 
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CHROMATOGRAPHIC BAND PROFILES 35 

gradients, we might be able to obtain an approximate solution of the sys- 
tem of Eqs. (1) which would be closer to the exact solution of the prob- 
lem than an exact solution of the system of Eqs. (3) with the cor- 
responding isotherms. 

4. The Semi-Ideal Model 

A reasonable alternative assumption could be to write that the rate of 
mass transfer does not change with concentration. We know that in the 
range of concentration used in preparative liquid chromatography (up to 
5% w/w maximum), the diffusion coefficients do not change much with 
concentration. In other words, we can assume that the kinetics of mass 
transfer is accounted for by an apparent diffusion coefficient, D,, (13) 
such that 

[a]’ = 2D,t, = HL (4) 

where [a] = the standard deviation of the band of a very small sample 
(Gaussian band observed in linear chromatography) 

to = the retention time of a nonretained compound 
H = the conventional HETP, which is nearly independent of k’ for 

L = the column length 
a given column 

Do, or the height equivalent to a theoretical plate, H, which is another 
expression of the kinetics of mass transfer, is constant during the 
experiment because the molecular diffusion coefficients do not vary 
much with concentration in the range investigated in preparative liquid 
chromatography. 

Equation (1) and the corresponding kinetic equation can be replaced 
by a combination of 

and the isotherm, as given by Eq. (3). 
The aim of this work is to relate the error made on the profile 

determined by numerical integration of the system of Eqs. (3) to the term 
in the RHS of Eq. (5).  
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36 LIN AND GUIOCHON 

5. Boundary Conditions 

We take the classical conditions of elution chromatography. At time 
t = 0 the column contains only the mobile phase, i.e., a constant 
concentration of those compounds which belong to it. The sample 
concentration is zero. At the origin of the column (z = 0) we assume that 
the concentration of the sample is zero, except during a well-defined 
period of time of finite duration, during which it is given by a continuous 
function which is digitized to satisfy the requirements of the program. In 
the simple case of a pulse injection, the concentration is different from 
zero only during one time increment, t ,  and the sample size is equal to 
the product o f t  and the concentration of the pulse (and by the mobile 
phase flow rate, for reasons of homogeneity of the equations). 

II. NUMERICAL INTEGRATION 

We briefly describe the algorithm used and then discuss the errors 
introduced by the numerical procedure during the calculation of the 
profiles. 

1. The Explicit Type 

We replace the continuous part of the (z, t) plane where the solution is 
defined by a grid having intervals equal to t and h in the time and space 
domains, respectively (I). We calculate successively the value of the 
concentration C(n, j) at each point (n, j) of the grid, starting from the 
points on the time and space axis for which we know the solute 
concentrations from the boundary conditions. 

We can rewrite Eq. (3) as 

ac ac 
az at 

- + B - = O  

with 

B = l l u ,  

and 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
5
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



CHROMATOGRAPHIC BAND PROFILES 37 

U u, = 
1 + F *  ac 

(7) 

The numerical algorithm used to derive a solution to the system of partial 
differential equations described above, using the finite difference method 
discussed by Rouchon (I), is given by the following equation (I, 5, 7): 

where t = the time integration increment 
h = the space length integration increment 
q = the concentration at the point (nh, jt) of the grid 

The definition chosen for the derivation of Eq. (8) corresponds to the 
explicit type (14). 

2. The Courant Condition 

The numerical values of the space length and time increments in Eq. 
(8) cannot be chosen independently but must satisfy a certain relation- 
ship in order for a stable solution to be obtained (I, 14). 

In the linear case, if the concentration q at the point (n, j )  of the grid is 
given by 

C; = hj' exp ( i j k t )  (9) 

where i2 = -1 and k is an  integer, we obtain 

where a = u,t/h is the Courant number. 

space length increments are selected in such a way that 
In order to obtain stable results, we must make sure that the time and 

This requires that 0 < l /a < 1 or a > 1. We have chosen a value of a equal 
to 2. 
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In the nonlinear case we have (1 )  

Supa-'(c) < 1 
C 

or 

1: 
- inf u,(c)  > 1 
hC c 

LIN AND GUIOCHON 

( lob)  

For any convex function, such as a Langmuir isotherm, inf u, = 
u/(l + FG), where G is the first-order derivative off at C = 0 (i,e., kh). 

3. Artificial Dissipation Coefficient 

The use of Eq. (8) to replace Eqs. (16) and (7) entails an error which can 
be estimated in a first approximation by using Taylor expansions of the 
concentration (14): 

and 

From Eq. (6) and since in a linear approximation B is constant, we can 
derive 

Combination of Eqs. (8) and (1 1)-(13) gives 

q+' - c; c; - qI 
1: 

+ B  
h 
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Comparing Eqs. (8) and (14) gives 

dC h a *c 
- + B -  = - ( a  - 1) - 
az at 2 dzZ 
ac 

or 

dC hu a2c 

az 2 a z 2  
( 1 + F -j$) % + u ~ = - (a  - 1) ~ 

The RHS of Eq. (16) is an artificial dissipation term. The artificial 
dissipation coefficient is 

hu 
2 D ,  = - (a  - 1) 

The first factor of Eq. (17) (hu/2 = h1/2t0) is best approximated by the 
apparent diffusion coefticient defined in Eq. (4), assuming that the 
column efficiency is constant. 

4. Space Length Increment and HETP 

The HETP in linear chromatography is classically defined by the 
second relationship in Eq. (4). Accordingly, it is equal to 2Dato/L, i.e., to 
2LIJu. Thus, if we take 

and 

we have a Courant number, a, equal to 2. Then, from Eq. (17), the 
artificial dissipation coefficient becomes equal to the apparent diffusion 
coefficient. Numerical calculations supply an approximate solution of 
Eq. (3) which is a correct solution of Eq. (5) .  i.e., an approximate solution 
of Eq. (l), the fundamental equation of chromatography. The kinetics of 
mass transfers between phases has been accounted for by a combination 
between an equilibrium isotherm and a global, apparent diffusion 
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40 LIN AND GUIOCHON 

coefficient. This has been called the semi-ideal model (4). The numerical 
solutions exhibit self-sharpening profiles for large concentrations, char- 
acteristic of “overloaded chromatographic columns. In fact, the ap- 
parent diffusion coefficient is different from the coefficient of the 
corrective term actually introduced by the numerical integration. The 
former follows a mass conservation law and transfers masses from the 
high frequency to the low frequency domain of the column response 
spectrum. The latter is a dissipative coefficient, which smoothes the 
profiles obtained, but the effect on the profile is similar. 
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